A HIGH LEVEL SYSTEM OF PROVIDING SECURITY TO THE FINGERPRINT TEMPLATE USING BIO-TOKENS

D. Gifty Thomas
PG Student, Department of CSE
ponjesly college of engineering,
Nagercoil, Tamilnadu

C. Anila Gifty
Assistant Professor, Department of CSE
ponjesly college of engineering,
Nagercoil, Tamilnadu

Abstract - Fuzzy vault fingerprint Cryptosystem uses pair polar framework. In this framework the number of fake minutiae is added to the genuine minutiae to hide the original features to provide security to the template. The chaff points are placed at a distance to provide a framework to hide the genuine features of the fingerprint template. The genuine and fake minutiae are distinguished. The implementation of this system provides high recognition accuracy. But when the genuine features are identified the template gets compromised. When the user has the access to multiple vaults the genuine features can be identified. To overcome this compромisation bio-token concept is proposed. It is also a cancellable biometric technique which provides identity to the template. The binary vault code is generated for the constructed vault and then it is stored in the database. The security to the template is enhanced. The EER can be decreased to about 30%. This system performs well in providing security to the fingerprint template.

Keywords- Bio-cryptosystem, pair-polar, Template, Fuzzy, Bio-Token

I. INTRODUCTION

More traditional means of access control include token-based identification systems, such as a driver’s license or passport, and knowledge-based identification systems, such as a password or personal identification number. Since biometric identifiers are unique to individuals, they are more reliable in verifying identity than token and knowledge-based methods; however, the collection of biometric identifiers raises privacy concerns about the ultimate use of this information.

Cancellable biometrics refers to the intentional and systematically repeatable distortion of biometric features in order to protect sensitive user-specific data. If a cancellable feature is compromised, the distortion characteristics are changed, and the same biometrics is mapped to a new template, which is used subsequently. Cancellable biometrics is one of the major categories for biometric template protection purpose besides biometric cryptosystem. In biometric cryptosystem, "the error-correcting coding techniques are employed to handle intra class variations." This ensures a high level of security but has limitations such as specific input format of only small intra class variations.

Fingerprint recognition is one of the biometric authentication techniques which express the individuality between the human beings. Fingerprint of humans are unique. Due to some unauthorized persons fake fingerprints are generated. In real life applications in-order to register the identity of the user, proofs are collected. The applications include banking systems and mobile transactions. Nowadays fingerprint is collected for government exams.

Matching of fingerprints is one of the most challenging tasks to be done by the detective agencies in-order to find the criminals. But after finding the original fingerprints, the collected ones are stored in the form of templates. In-order to reduce the accuracy of the fingerprint matching, attackers retrieves the templates from the database and replaces it with the fake ones. This becomes critical in the case of storing fingerprints of criminals.

In-order to avoid such critical situation researchers introduced biometric techniques to protect the template. In biometrics, the authentication techniques rely on measurable, physiological and individual characteristics that can be automatically verified. In such case the needed information can be stored in the database and can be retrieved when it is needed.

Alignment free Cryptosystem is based on orientation based minutiae descriptors and local structures of minutiae [3]. It performs matching using only the relative information between the minutiae. Normally the fingerprint impressions suffer from nonlinear distortion during the acquisition process. The distortion includes applied pressure, skin moisture, the elasticity of the skin [4] this may affect the genuine...
feature that is extracted from the fingerprint image. This also creates the reissue and reset of biometric features. The biometric features cannot be reissued or reset because of the scarcity of biometric traits an individual possesses [5]. In order to overcome this issue the cancelable fingerprint templates can be generated [7]. It helps to overcome the distortion of fingerprint templates. To provide security to the templates the fuzzy vault cryptosystem was introduced to enhance the recognition accuracy of the system. Bio-cryptosystems provide a solution for the template security[9]. Bio-Tokens are the proposed concept to provide identity to the fingerprint template to avoid compromisation of the template.

II. RELATED WORK

As per the present scenario, in alignment free fingerprint cryptosystems matching is done by using the relative information between the minutiae and it adds additional information to the fingerprint template to facilitate automatic alignment during the verification process. But pre-alignment is only acceptable in research but it is not practical in real life applications. Automatic alignment produces issues that it relies on the core points and high curvature points and as the result automatic alignment leads to high False Rejection Rate (FRR). Due to the information leakage in alignment free cryptosystems the accuracy level goes low. Based on the survey the research work provided by the authors can be given as follows

N.K Ratha et al[1] have dealt with the cancellable identifiers. Biometrics-based authentication systems offer obvious usability advantages over traditional password and token-based authentication schemes. However, biometrics raises several privacy concerns. A biometric is permanently associated with a user and cannot be changed. Hence, if a biometric identifier is compromised, it is lost forever and possibly for every application where the biometric is used. Moreover, if the same biometric is used in multiple applications, a user can potentially be tracked from one application to the next by cross-matching biometric databases. Several methods to generate multiple cancellable identifiers from fingerprint images is demonstrated to overcome these problems. In essence, a user can be given as many biometric identifiers as needed by issuing a new transformation “key.” The identifiers can be cancelled and replaced when compromised. It is empirically compared using the performance of several algorithms such as Cartesian, polar, and surface folding transformations of the minutiae positions. It is demonstrated through multiple experiments that can achieve revocability and prevent cross-matching of biometric databases. T.C Clancy et al[6] have dealt with the authentication based on smart card. The fundamental insecurities hampering a scalable, wide-spread deployment of biometric authentication are examined, and a cryptosystem capable of using fingerprint data as its key is presented. For the application, situations where a private key stored on a smartcard are used for authentication in a networked environment, and assumption is done as an attacker can launch online attacks against a stolen card. U.Uludag et al [10] have dealt with the fuzzy vault based technique. Biometrics-based user authentication has several advantages over traditional password-based systems for standalone authentication applications, such as secure cellular phone access. This is also true for new authentication architectures known as crypto-biometric systems, where cryptography and biometrics are merged to achieve high security and user convenience at the same time. The realization of a cryptographic construct, called fuzzy vault, with the fingerprint minutiae data is specified. This construct aims to secure critical data (e.g., secret encryption key) with the fingerprint data in a way that only the authorized user can access the secret by providing the valid fingerprint. The results show that 128-bit AES keys can be secured with fingerprint minutiae data using the proposed system. Xinjian Chen et al[11] have dealt with the problem of matching the fingerprints with non linear distortions. Coping with nonlinear distortions in fingerprint matching is a challenging task. A novel method, a Fuzzy Feature Match (FFM) based on a local triangle feature set to match the deformed fingerprints. The fingerprint is represented by the fuzzy feature set (i.e.) the local triangle feature set. The fuzzy feature set is used to characterize the similarity between fingerprints. The fuzzy similarity measure for two triangles is introduced and extended to construct a similarity vector including the triangle-level similarities for all triangles in two fingerprints. A similarity vector pair is defined to illustrate the similarities between two fingerprints. C.Lee et al[12] have dealt with alignment free cancellable fingerprint template. To replace compromised biometric templates, cancellable biometrics has been introduced. The concept is to transform a biometric signal or feature into a new one for enrolment and matching. For making cancellable fingerprint templates, the relative position of a minutia to a core point in a given fingerprint image is specified. Thus, a query fingerprint is required to be accurately aligned to the enrolled fingerprint in order to obtain identically
transformed minutiae. A new method for making cancellable fingerprint templates that does not require alignment is based on the local minutiae information. For each minutia, a rotation and translation invariant value is computed from the orientation information of neighboring local regions around the minutia. The invariant value is used as the input to two changing functions that output two values for the translational and rotational movements of the original minutia, respectively, in the cancellable template. When a template is compromised, it is replaced by a new one generated by different changing functions. K. Nandakumar et al[13] have dealt with the implementation and performance of fuzzy vault. Reliable information security mechanisms are required for increasing the magnitude of identity theft in the society. While cryptography is a powerful tool to achieve information security, the challenge in cryptosystems is to maintain the secrecy of the cryptographic keys. Though biometric authentication can be used to ensure that only the legitimate user has access to the secret keys, a biometric system itself is vulnerable to a number of threats.

III. PROPOSED SYSTEM

The Fuzzy vault system uses pair-polar minutiae structure. It uses the reference minutiae and all others within the polar coordinate space. In this technique minutiae extraction takes place from the fingerprint image which can be known as the template and to the template chaff points are added. The genuine points and the chaff points are distinguished; chaff points are bound to the template to create a fuzzy vault. The template is stored in the database. When the query is send to the database for retrieving the template. The spurious minutiae get reduced and the original template is retrieved.

![Diagram](image)

Figure 1 Fuzzy vault system using bio-tokens

User Interface is the one where the images of the fingerprint are sensed and the different image of the same fingerprint is collected. Then the collected fingerprints are stored in the database. The fingerprint image is not stored in the database, only the template of the fingerprint image is stored in the database. Formation of the template can be done through the minutiae extraction. Minutiae extraction is done to extract ridge and the bifurcations from the fingerprint image. The extraction of ridge and bifurcation is done check the similarity between the fingerprints using minutiae based methods. The extracted minutiae points can be called as the genuine points or original minutiae points. The genuine points must be treated as the confidential one. In the case of certain applications fingerprint matching takes place trough the genuine points. The third party can easily retrieve the template on knowing the genuine points.

To provide security to the template the fuzzy vault[8] creation is done. Here the fuzzy vault indicates the addition of chaff points to the template. The chaff points are placed at the certain distance. The genuine points and the chaff points are distinguished. Then the template is stored in the database. The template is queried from the database. To the query fingerprint the filtering of the false minutiae takes place. At this case the chaff points get reduced. The original template of the fingerprint image is retrieved.

The similarity between the fingerprint retrieved and fingerprints in the database is checked. The similarity is computed using the score value. Similarity computation is done to evaluate the number of structures find the successful match. Based on the score value the FMR and FNMR diagrams are
constructed. The construction of FMR and FNMR is done to evaluate the performance of the system. When the error rate decreases the recognition accuracy is satisfactory.

A. Generation of vault

The general shape of the fingerprint is generally used to pre-process the images, and reduce the search in large databases. This uses the general directions of the lines of the fingerprint, and the presence of the core and the delta. The minutiis are extracted from the fingerprint image and the minutiis consists of features including ridge, core, bifurcation etc. A critical step in automatic fingerprint matching is to automatically and reliably extract minutiis from the input fingerprint images. The images is converted to binary image. After the operation, ridges in the fingerprint are highlighted with black colour while furrow are white. Ridge thinning is to eliminate the redundant pixels of ridges till the ridges are just one pixel wide, then the template of the fingerprint image is generated. The corresponding template is stored in the database for future use. To provide security to the template fake points (chaff points) are generated randomly. It resembles as the genuine minutiis. A well-established minutiis matcher in global minutiis matching algorithms is seamlessly transformed into a transformation-invariant feature-applicable version, information about the original feature is largely retained using a fine quantization, which only removes the decimal parts of the features. Unlike many fuzzy vault constructions that choose chaff points separated by a minimum distance d from any genuine point and previously added chaff point, where d is the distance inside which a query feature and vault point are considered matched during verification, the proposed vault selects both genuine and chaff features greater than 2d away from each other. As this design removes the probability that a query feature matches multiple points in the vault, decoding time is significantly reduced.

B. Generation of Binary Vault Code

Binary Vault Code is a code of binary digits. It provides an identity to the template that is extracted from the fingerprints that is stored in the database. The binary vault code is a code that is randomly generated with the binary values 0’s and 1’s. By providing an identity to the vault, the compromisation of the vaults can be minimised. Unique identity is provided to the vault that is generated, and through the generation of binary vault code, the multiple access to the vaults can be minimized. It provides security to the vault.

C. Similarity Computation

In global minutiis matching algorithms, after two fingerprints (a template and query) are aligned, their corresponding minutiis are paired. This minutiis matcher is widely adopted in minutiis-based fingerprint matching because it can effectively deal with the intra-class variations between different captures of the same fingerprint. At fi rst glance, the above well-established minutiis matcher cannot be applied directly to the P-P coordinate vectors which represent relative information and do not contain Cartesian positions. The filtering of the fake minutiis takes place and then the template matching takes place for the fingerprints in the database. The different images of the same fingerprint is taken and stored in the database. The similarity value is computed.

Based on the computed score the recognition accuracy can be calculated. The performance is analyzed based on the number of samples taken. The matching takes place as follows: The fi rst image of each finger is compared with the second image of the same finger and then with the fi rst image of the remaining fingers to fi nd the successful match. The Number of matched fingerprints increases in this system. By increasing the similarity score the error rates can be minimized. By decreasing the error rates the recognition level is increased.

IV. EXPERIMENTAL RESULTS

Performance evaluation focuses in measuring the progress and process of achievement of project results and how inputs and outputs are producing outcomes and impacts. Performance evaluations are designed to identify accomplishments, performance issues, and constraints in the implementation. The performance of the implemented system can be analysed with the help of x-graph utility for generating 2-D graphs. The values for analysing performance can be retrieved from trace files obtained during simulation. Performance metrics used for biometric systems are:

False Match Rate [14] (FMR, also called FAR = False Accept Rate): The probability that the system incorrectly matches the input pattern to a non-matching template in the database. It measures the percent of invalid inputs that are incorrectly accepted. In case of similarity scale, if the person is an imposter in
realistic, but the matching score is higher than the threshold, then he is treated as genuine. This increases the FMR, which thus also depends upon the threshold value.

False Non-Match Rate [14] (FNMR, also called FRR = False Reject Rate): The probability that the system fails to detect a match between the input pattern and a matching template in the database. It measures the percent of valid inputs that are incorrectly rejected.

Receiver Operating Characteristic or relative operating characteristic (ROC) [14]: The ROC plot is a visual characterization of the trade-off between the FMR and the FNMR. In general, the matching algorithm performs a decision based on a threshold that determines how close to a template the input needs to be for it to be considered a match. If the threshold is reduced, there will be fewer false non-matches but more false accepts. Conversely, a higher threshold will reduce the FMR but increase the FNMR. A common variation is the Detection error trade-off (DET), which is obtained using normal deviation scales on both axes. This more linear graph illuminates the differences for higher performances (rarer errors).

Equal Error Rate or crossover error rate (EER or CER) [14]: The rate at which both acceptance and rejection errors are equal. The value of the EER can be easily obtained from the ROC curve. The EER is a quick way to compare the accuracy of devices with different ROC curves. In general, the device with the lowest EER is the most accurate.

Failure To Enroll Rate (FTE or FER) [14]: The rate at which attempts to create a template from an input is unsuccessful. This is most commonly caused by low quality inputs.

Failure To Capture Rate (FTC) [14]: Within automatic systems, the probability that the system fails to detect a biometric input when presented correctly.

Template Capacity [14]: The maximum number of sets of data that can be stored in the system.

MATCHING OF SAMPLES:

Two different protocols (the 1vs1 and standard FVC) [2] to evaluate the recognition performance of the proposed system. In the 1vs1 protocol, the first image of each finger is compared with the second image of the same finger to compute the FRR and then compared with the first images of the remaining fingers to compute the FAR. To avoid a duplicate comparison, if image 1, as the template, has been compared with image 2, when image 2 is chosen as the template, it is not compared with image 1 again.

The probability that the system incorrectly matches the input pattern to a non-matching template in the database. It measures the percent of invalid inputs that are incorrectly accepted. In case of similarity scale, if the person is an imposter in reality, but the matching score is higher than the threshold, then he is treated as genuine. This increases the FMR, which thus also depends upon the threshold value. The probability that the system fails to detect a match between the input pattern and a matching template in the database. It measures the percent of valid inputs that are incorrectly rejected. The rate at which both acceptance and rejection errors are equal. The value of the EER can be easily obtained from the ROC curve. The EER is a quick way to compare the accuracy of devices with different ROC curves. In general, the device with the lowest EER is the most accurate.

The proposed system of using bio-tokens mainly focuses on Equal Error Rate. By decreasing the equal error rate the recognition accuracy of the system can be improved. For the purpose of decreasing the equal error rate the similarity score of the fingerprints can be increased. The proposed work can be done through the use of the bio-tokens by providing the identity to the fingerprint template. Thus the template security can be enhanced.

V. CONCLUSION AND FUTURE WORK

A well-known issue regarding the fuzzy vault is that it is vulnerable to the cross-matching attack. If the attacker has access to multiple vaults generated from the same biometric data, he can easily identify the genuine features by comparing the genuine features between the vaults. This issue, however, can be addressed in the future work by setting a distinct seed for the random number generators in each application. In this way, the same biometric data is transformed to different features encoded in the fuzzy vault. Once a vault is compromised, a new vault can be created from the same fingerprint data by replacing the current vault. While implementing this technique the genuine points could not retrieved easily and critical to retrieve the original template. To avoid the compromising of the template the bio-token concept is used. It is the method of providing identity to the fingerprint template. Thus the security to the template can be enhanced.
REFERENCES

